

INTRODUCTION

The problem? Biofilms.

Biofilms are complex, interdependent communities of surface-associated bacteria. The microorganisms are enclosed in a matrix that can occur on any surface, in particular aquatic and industrial water systems. Because they often form sessile communities on medical devices and food preparation settings, millions of people in the developed world are affected by diseases such as cystic fibrosis and pneumonia, with some experiencing death as a consequence.

Possible solutions? Inhibit communication.

For the safety of both plants and animals, it is vital to be able to eliminate biofilms. However, the polymers in the matrix of a biofilm retard diffusion of antibiotics, giving them an increased tolerance to immunological defenses, stress, and biocides. There is also a greater frequency for individual bacteria in biofilms to develop antibiotic resistance due to a higher probability of horizontal gene transfer among bacteria in close proximity. A biofilms' resistance to antibacterial agents warrants the need to either:

1. Prevent initial growth. 2. Sterilize the colony.

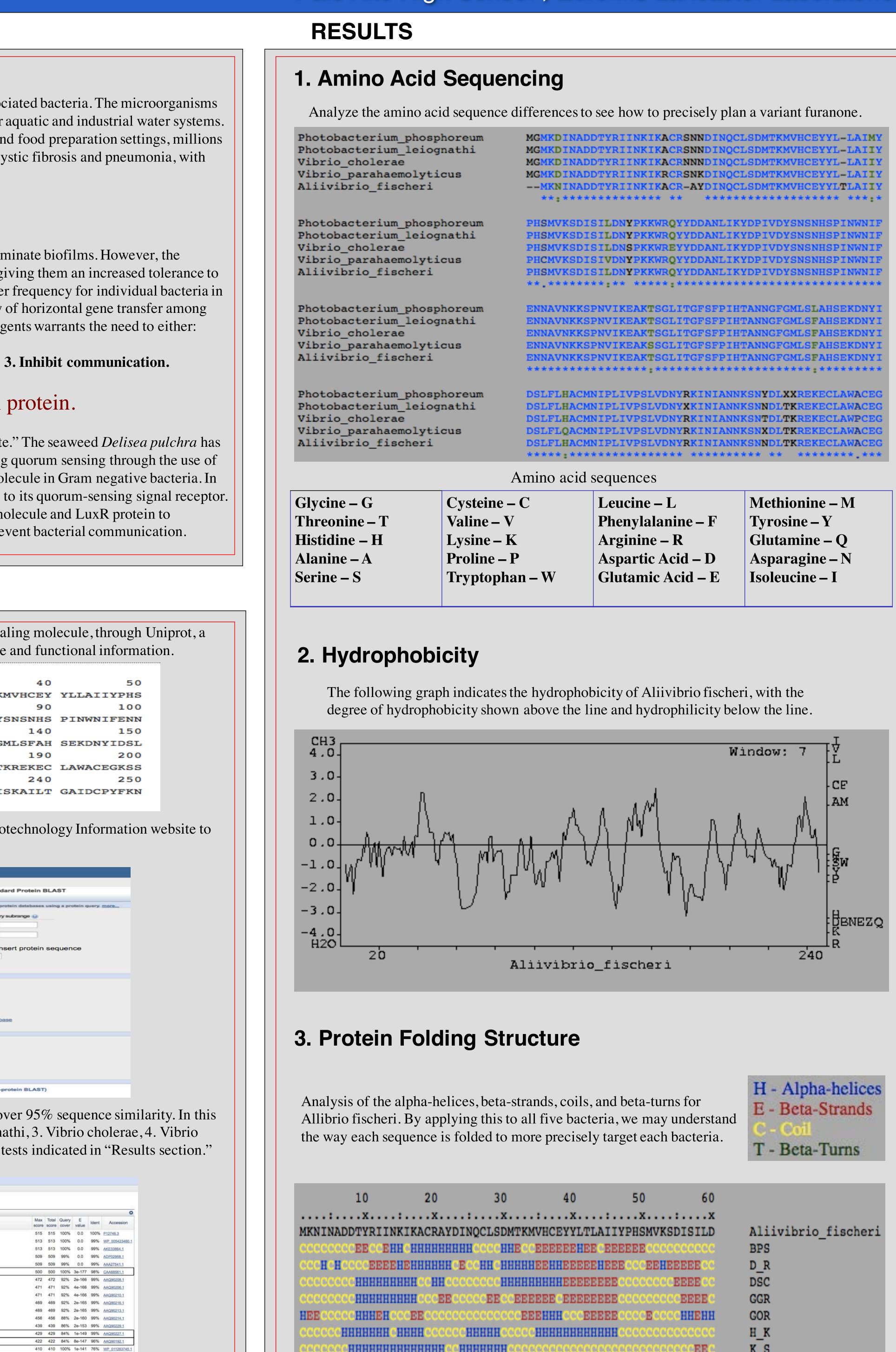
How? Analyze bacterial sequences for LuxR protein.

Quorum sensing is the mechanism by which bacteria "communicate." The seaweed Delisea pulchra has stayed slime-free in bacteria-infested waters by naturally preventing quorum sensing through the use of furanones, compounds structured similarly to an AHL signaling molecule in Gram negative bacteria. In high enough concentrations, furanones displace AHL from binding to its quorum-sensing signal receptor. In this study, we seek to analyze bacteria with the AHL signaling molecule and LuxR protein to accurately produce alternate furanone variations, and ultimately prevent bacterial communication.

METHODS

1.Find the LuxR protein sequence, which produces the AHL signaling molecule, through Uniprot, a comprehensive and freely accessible database of protein sequence and functional information.

	40	30	20	10
YLL	DMTKMVHCEY	SNNDINQCLS	RIINKIKACR	MKNINADDTY
	90	80	70	60
PIN	IVDYSNSNHS	DDANLIKYDP	NYPKKWRQYY	MVKSDISILD
	140	130	120	110
SEK	NGFGMLSFAH	GFSFPIHTAN	KEAKTSGLIT	AVNKKSPNVI
	190	180	170	160
LAW	NDLTKREKEC	KINIANNKSN	IVPSLVDNYR	FLHACMNIPL
	240	230	220	210
GAI	CQSISKAILT	AQMKLNTTNR	ERTVTFHLTN	WDISKILGCS


2. Utilize Stanford Protein BLAST on the National Center for Biotechnology Information website to find species of bacteria with the LuxR protein sequence.

AST [®] » blast	p suite	
	Standard Protein BLAST	Г
blastp blast	tx tblastn tblastx	
Enter Query S	BLASTP programs search protein databases using a	prot
Enter accession	number(s), gi(s), or FASTA sequence(s) 😡 Clear Query subrange 😡	
MKNINADDTY RI MVKSDISILD NYF AVNKKSPNVI KE FLHACMNIPL IVP	IINKIKACR SNNDINQCLS DMTKMVHCEY YLLAIIYPHS PKKWRQYY DDANLIKYDP IVDYSNSNHS PINWNIFENN AKTSGLIT GFSFPIHTAN NGFGMLSFAH SEKDNYIDSL PSLVDNYR KINIANNKSN NDLTKREKEC LAWACEGKSS TVTFHLTN AQMKLNTTNR CQSISKAILT GAIDCPYFKN	
Or, upload file	Choose File No file chosen	end
Job Title		
	Enter a descriptive title for your BLAST search 😡	
	nore sequences 😥	
Choose Sean	ch Set	
Database	Non-redundant protein sequences (nr) 💠 😡	
Organism Optional	Enter organism name or id-completions will be suggested	
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.	
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences	
Entrez Query	Yeu The Create custom database	
Optional	Enter an Entrez query to limit search 🥹	
Program Sele	action	
Algorithm	blastp (protein-protein BLAST)	
	O PSI-BLAST (Position-Specific Iterated BLAST)	
	O PHI-BLAST (Pattern Hit Initiated BLAST)	
	 DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) 	
	Choose a BLAST algorithm 😥	
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)	
DLAST	Show results in a new window	

3. Choose five bacteria with the LuxR sequence and an Ident of over 95% sequence similarity. In this case, the bacteria: 1. Aliivibrio fischeri, 2. Photobacterium leiognathi, 3. Vibrio cholerae, 4. Vibrio parahaemolyticus, 5. Photobacterium phosphoreum. Perform the tests indicated in "Results section."

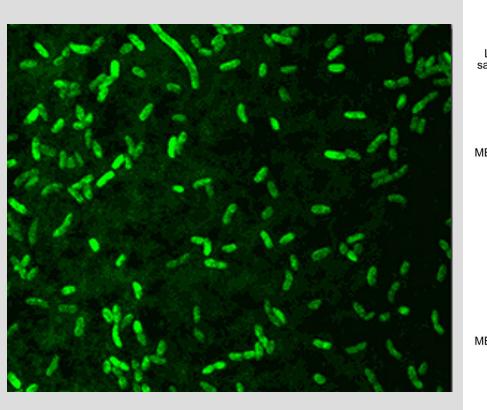
Alignments 🖉 Download 🚽 GenPept Graphics Distance tree of results. Multiple alignment						
Description	Max	Total score	Query cover	E value	Ident	Accession
RecName: Full=Transcriptional activator protein LuxR	515	515	100%	0.0	100%	P12746.3
Transcriptional regulator [Allvibrio fischer]	513	513	100%	0.0	99%	WP_00542346
LuxR [Plasmid vector pCCB9]	513	513	100%	0.0	99%	AKE33864.1
LuxR [Cloning vector pLR3]	509	509	99%	0.0	99%	ADP02958.1
IvaR protein [Allivibrio fischeri]	509	509	99%	0.0	99%	AAA27541.1
Juar B [Allivibrio fischeri]	500	500	100%	3e-177	98%	CAA68561.1
LuxR (Alivibrio fischeri)	472	472	92%	2e-166	99%	AAQ90208.1
LuxR [Alivibrio fischer]	471	471	92%	4e-166	99%	AAQ90206.1
LuxR [Aliivibrio fischeri]	471	471	92%	4e-166	99%	AAQ90210.1
LuxR [Alivibrio fischen]	469	469	92%	2e-165	99%	AAQ90216.1
LuxR [Alivibrio loge]	469	469	92%	2e-165	99%	AAQ90213.1
LuxR [Vibrio mimicus]	456	456	88%	2e-160	99%	AAQ90214.1
LuxR [Alivibrio fischeri]	439	439	86%	2e-153	99%	AAQ90229.1
LuxR [Photobacterium leiognath]	429	429	84%	1e-149	99%	AAQ90227.1
LuxR [Vibrio cholerae]	422	422	84%	8e-147	96%	AAQ90192.1
LuxR family transcriptional regulator [Alivibrio fischeri]	410	410	100%	1e-141	76%	WP 011263745
LuxR [Vibrio parahaemolyticus]	407	407	82%	3e-141	96%	AAQ90194.1
LuxR IPhotobacterium phosphoreum	395	395	79%	1e-136	97%	AAQ90190.1
LuxR (Alivibrio fischer)	387	387	76%	1e-133	99%	AAQ90200.1
LuxB IAlivibrio fischeri	379	379	92%	1e-129	75%	AAQ90220.1
LuxR [Alivibrio fischer]	377	377	92%	3e-129	75%	AAQ90202.1

Adele Bloch¹, Ivy Li¹, Gihani Wijewickrama² Palo Alto High School¹, Eurofins Lancaster Laboratories²

CCCCCHCCCCECHHEECEECEE

HHHHHHHHHH

0 60	
xx	
SMVKSDISILD	Aliivibrio_fischeri
Eccccccccc	BPS
CEEHEEEEECC	D_R
CCCCCEEEECC	DSC
CCCCCCEEEEC	GGR
СЕССССННЕНН	GOR
00000000000000	H_K
CCCCCCCCEEC	K_S
CCCCCCCCECC	JOI


DISCUSSION

structure of five Gram negative bacteria species that hold the LuxR protein.

Our goal is to contribute to how to most effectively modify furanones, natural bacteria resistance, in order to inhibit quorum sensing in biofilms. We specifically looked at five Gram negative bacteria:

> Aliivibrio fischeri Photobacterium leiognathi Vibrio cholerae Vibrio parahaemolyticus

Photobacterium phosphoreum

INNER MEMBRANE

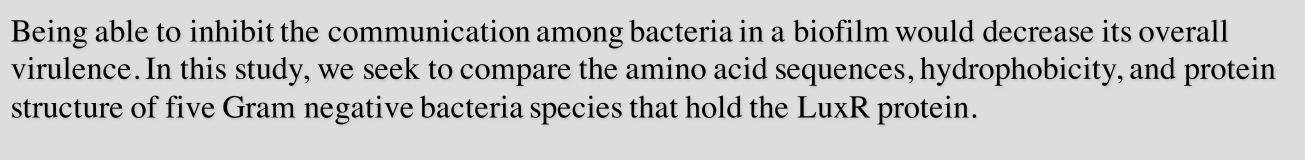
FUTURE WORK

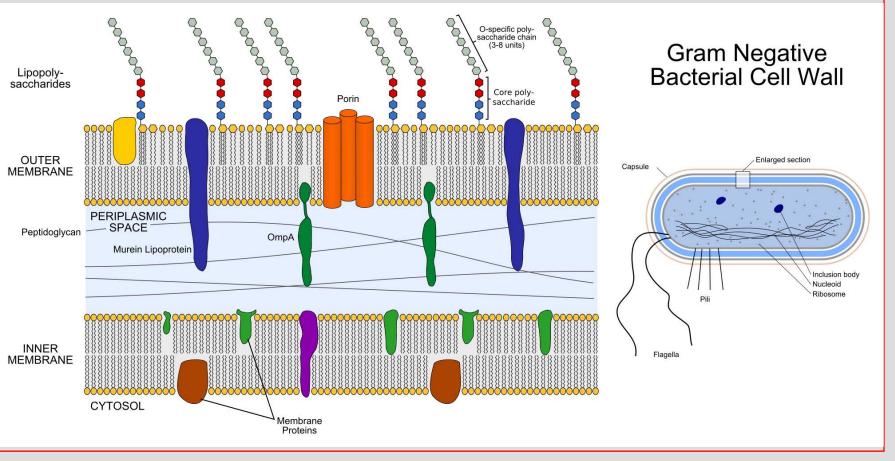
- structure and transmembrane segments.
- 3. Explore current furanone variant studies.
- solely inhibiting communication, which is the focus of this study.

REFERENCES

Hentzer, Morten, and Kathrin Riedel. "Inhibition of Quorum Sensing in Pseudomonas Aeruginosa Biofilm Bacteria by a Halogenated Furanone Compound." Department of Molecular Microbiology, 2002. Web. http://www.researchgate.net/publication/11574813_Hentzer_M_Riedel_K_Rasmussen_TB_Heydorn_A_Andersen_JB_Pa rsek_MR_et_al.._Inhibition_of_quorum_sensing_in_Pseudomonas_aeruginosa_biofilm_bacteria_by_a_halogenated_furano ne_compound._Microbiology_148_87-102>.

Koch, B., T. Liljefors, T. Persson, J. Nielsen, S. Kjelleberg, and M. Givskov. "The LuxR Receptor: The Sites of Interaction with." Microbiology, 8 July 2005. Web. http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.27954- 0?crawler=true&mimetype=application/pdf>.


Nadell, Carey D., Joao B. Xavier, Simon A. Levin, and Kevin R. Foster. "The Evolution of Quorum Sensing in Bacterial Biofilms." Public Library of Science, 28 Jan. 2009. Web. http://journals.plos.org/plosbiology/article?id=10.1371%2Fjournal.pbio.0060014>


Oinuma, Ken-Ichi, and Peter Greenberg. "Acyl-Homoserine Lactone Binding to and Stability of the Orphan Pseudomonas Aeruginosa Quorum-Sensing Signal Receptor QscR." Journal of Bacteriology. American Society for Microbiology, Jan. 2011. Web. http://jb.asm.org/content/193/2/421.full.

ACKNOWLEDGEMENTS

We would like to take this space to thank **Dr. Jeong Choe**, our advisor, and **Gihani Wijewickrama**, our mentor, for guiding us through this year-long project; Michelle Steingart, who initially connected us to the international exchange program with National Junior College; and Dr. Max McGee for supporting us in all of our endeavors.

. Gather further data on each DNA sequence, such as the prediction of the protein's secondary

2. Analyze other Gram-negative bacteria, aside from the current five explored in this study.

Work to remove biofilms by preventing initial growth and sterilizing the colony, as opposed to