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Motivation



Why does mobile testing matter?

Online experience is becoming Mobile-First

➢ Banking
➢ Entertainment
➢ Social apps
➢ Gaming

➢ VC
➢ Health
➢ Business
➢ Hobbies

… and more



Problem Statement

SECURITY USER EXPERIENCE PRODUCTIVITY



Research Methodology

IDENTIFY

UNDERSTAND

BENCHMARK

COMPARE

Identify commonly used approaches in industry and research

Literature review to deep dive into different testing methodologies

Establish standard benchmark

Compare CODE COVERAGE and FAULT DETECTION of different 
approaches against the benchmark. 

Android has 70+% of mobile OS market share. We use it to do the comparisons



Approaches to Testing



Random Testing

Fully blackbox

Send random, independent inputs to the app

Difficult to reproduce crashes

Prior info not leveraged



Model Based Testing

Reuses learned information

Infer app model and state from GUI, and exploit it 

Easy to reproduce crashes

Model cannot capture all 
information



Systematic Testing

Use symbolic execution to get high test coverage

Efficient use of internals

Not blackbox

Path explosion leads to complexity



Machine Learning Based Testing

Deep learning about apps

Train model on many apps to learn app behaviors, and 
test using that knowledge

Complex to build due to 
variety of events and widgets

Leverage info across apps

Trial/error nature lends to regressive learning algorithms



Results and Findings



Monkey

● Google's default Android testing tool 

● Random testing, no learning

● Pros
○ Out-of-the-box, simple. Widely used.

● Cons
○ Bug recreation is hard

○ Long execution times

○ No ability of event selection

Selected as benchmark for wide adoption



Sapienz
● White box testing by instrumenting the code

● Provides different capabilities depending on level of access

● White box testing is resource intensive and non-leverageable 
across apps



APE

● Starts with an abstract model, and tunes it as it tests and learns.

● Dynamic tuning well suited for complex GUI trees

● Effective blackbox testing



DeepGUI/Monkey++

● Uses machine learning to create heat map of pixels likely to be widgets

● Sophisticated event selection process 

● Implemented in Monkey, creating Monkey++



ARES

● Generic, black box testing tool that learns and evolves

● Neural network semantics - trial and error testing with reward system

● Users can plug in any of the neural learning algorithms 



DeepGUIT

● Q-learning: Understand value of an action in a certain state, and try to get 
to a more "interesting" state from there

● Whitebox testing, needs code instrumentation to be effective

● Can lead to an explosion of # of state-action pairs in complex apps



Conclusion and Implications



Conclusions

● ML-based tools most effective

● Neural algorithms have potential to 
create intelligent automated tools

● Sapienz has very effective fault 
detection

● Monkey++ demonstrates significantly 
more efficient event detection

Best fault 
detection

Best code 
coverageFastestEffective



But, there are gaps

➢ Random or model based testing

○ Can't handle complex workflows and states

○ Faults difficult to reproduce in random testing

○ Either low code coverage or long testing times - both lead to poor fault detection

➢ Neural Self Learning methods
○ Need very a large set of training apps to get trained

○ Time intensive to build. Need specialized skills. 

○ Android events and widgets are complex and varied and upsets self learning 

○ Runs into memory pressure with complex workflows



My Algorithm

● Create app models for testing

● Use computer vision to understand 
GUI 

● Discover states with many unexplored 
events to maximize code coverage

● Implements regressive learning to 
improve event selection

● Adapt reward mechanisms to optimize 
finding security vulnerabilities
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Thank You

Any Questions?


