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DATA AND FINDNGS

Nucleons (protons and neutrons) can be excited to a quantized energy level 1n a nuclear reaction just like electrons 1in a chemical reaction. The number of these quantized

energy levels, E, per unit of energy, N, 1s known as the level density, o(E).

e o(E)=dN/dE. As E increases, so does the level density.
® Measuring sd-nuclei - from 8-20 nucleons.

e Exponential approximation of a bell curve function:
°*o(E)=eN(E-E0)/T)/T. Effective Temperature T measures chaotic nuclear motion

In realistic situations, two trends exist: staggering of the temperatures of odd-neutron and even-neutron nuclei, and a minimum temperature value at the number of neutrons
equaling the number of protons. We attempt to determine what types of particle interactions are responsible for these trends.

RESEARCH METHODOLOGIES

1. We split a matrix of 63 particle interactions, with an amount of energy associated with each
one, into 33 “Isospin-0” (proton-neutron) interactions and the remaining “Isospin-1~
interactions. We hold one type of interaction constant, then multiply the energy associated
with the other by 0, 0.1, 0.2, 0.3.....1.

2. Every nucleus at every interaction constant is run through NuShellX, which outputs a list
of level densities.

3. From this list of level densities, one can use a program in mathematica to create the
parameters EO and T that best fit the values of E and o(E) by using the Least Square
Regression method.

4. The EO value 1s simply a shift of the graph representing ground state energy and 1s
therefore 1ignored. With the temperature values, we graph the following:

a. temperature as a function of the interaction constant for a given nucleus
b. first derivative of the above for a given element
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5. Using these values, we can determine a correlation between a type of interaction and

observed trends.
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® Prior results show that pairing interactions are responsible for the minimum at
N=Z, while they are not responsible for the staggering of the temperatures.

e Unlike separating the interaction matrix 1nto pairing and non-pairing
interactions, separating the matrix based on i1sospin has less valuable impact
on the trends:

a. Isolating the effect of either interaction (when the other’s strength 1s 0)
creates no staggering pattern (Figures 2, 3).

b. There 1s a minimum at N=Z for when the 1sospin-1 interactions are 1solated,
but not the expected one at N=Z+1 or N=7-1 (Figure 3).

c. Relationship of Temperature with respect to the interaction strength 1s not
linear, but instead 1s parabolic (Figure 1), and therefore taking the first
derivative would be of no use.

DISCUSSION, ANALYSIS, AND EVALUATION

CONCLUSIONS, IMPLICATIONS, AND NEXT STEPS

e Staggering of the Temperatures

o Regardless of the type of particle interaction, dampening the

effects of the interaction will cause there to be less of the
staggering effect visible in the graph.

o Therefore, as each type of interaction 1s actually a set of 30+
individual interactions, we can’t say anything specific about what
the type of interaction will do to the staggering ot the nuclei.

e Minimum at N=Z or N=7 +/- 1

o We could see that by i1solating only the 1sospin-O nuclei, the
minimum existed at N=Z+1 for aluminum and N=Z for
magnesium. That was not true when we 1solated 1sospin-1 nuclei.

o This means that only the
proton-neutron interactions
are responsible for the minimum.

e Evaluation of Isospin Test

o Though 1t was a logical follow-up

after the pairing test, 1t did not

result 1n the valuable information

Figure 5

we expected.

Prior Research:
Pairing v. Non-Pairing
Interactions. Valuable

trend implications.
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spherical.

Future Research:
Examine other types of
particle interactions -
nucleus-deforming and

!

Expand findings
beyond sd-nuclei, as
reactions that involve

p, f, and other orbaitals
are also important

Current Research:
Similar Target -
Isospin-1 vs. Isospin-0.
Very few trend
implications .

!

Next Step:
Re-examine current
research. Compare

results from different
values of nuclear
angular momentum.

Ultimate Goal:
Create a mathematical
model that can predict
any level density curve

for any nucleus.
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