
● Goal: Minimize food waste, assist individuals with special health 
conditions such as diabetes and high blood pressure

● Solution: personalized nutrition, and thus, accurate nutritional 
value prediction

● Existing research: meal descriptions and large language models 
or image inputs, rather than simply names of words and 
convolutional neural networks
○ BERT and other commonly used semantic analyzation 

techniques are often used for classification rather than 
numerical regression

● This research: Usage of a single word as an input rather than the 
conventional illustrative meal descriptions with neural networks
○ Convenience to users
○ Innovative solution to a novel problem

 INSPIRATION

 DATASET AND FINDINGS

● Expanding the dataset to encapsulate additional data rows for a breadth of training 
data and more accuracy

● Employing a custom neural network for each individual output—such as solely 
predicting sugars, carbohydrates, or caloric values based on the name of the food: 
rather than all thirty-four at once—may lead to better results. 
○ MultiOutputRegressor model architecture took a step towards this, but utilized 

the same layer architecture for all outputs, leading to lack of customization. 
● Employing a more diverse and methodical approach for testing optimal dense layers 

for the models
○ Possibly lead to smaller MMAEs

● Employ the large language approach for this model with the same data, inputs and 
outputs
○ See how these two different model architectures performed when compared to 

each other
● Similarly, employing BERT with a classification task by categorizing the outputs of 

the model to be intervals of a certain precision/width rather
○ Could be another model to compare

 IMPLICATIONS AND NEXT STEPS

1. Multi-Output Regressor with Custom Neural Network
● Multi-Output Regressor extends the parameterized model type over the desired thirty-four nutritional values such as those shown 

in Figure 1
● Parameterized model fits over the preprocessed training input values and scaled nutritional values

○ Employs the KerasRegressor with custom layers and activation function
● Input layer: eight neurons after padding, afterwards embedded and flattened
● Output layer: one neuron after scaling

2. Neural Network with Directly 34 Outputs (no Multi-Output Regression)
● Input layer: eight neurons
● Output layer, thirty-four neurons, each representing a nutritional value

○ 34 outputs from one network rather than one output from 34 networks

3. GridSearchCV (no Multi-Output Regression)
● Built-in search for the most optimal parameters over a cross-fold of 10
● Utilizing Multi-Layer Perceptron Regressor

○ Differed from the custom neural network architecture earlier, which implemented the model leveraging Keras
● Beneficial platform to validate assumptions made in the previous models: layers of the model, activation functions, and solvers

Figure 5: MMAE as 
defined earlier for each 
model as well as graphs 
for (testing MAE, training 
MAE) over each of the 
output variables. The red 
line on each graph 
represents the least 
squares regression line, 
and the blue line 
represents the line y=x, 
for reference.

Figure 1: A few data rows for example, cut off. There are 34 total columns, each corresponding to an output nutritional value.

Optimizing Machine Learning Models for Accurate Nutritional Value 
Prediction Anika Kumar

Figure 4: 
GridSearch
CV 
parameter 
grid setup.

Figure 3: (left)  Solely custom neural network most optimal tested layers 
pathway, represented graphically. 
Figure 2 (right): Multi-Output Regressor’s parameterized custom neural 
network most optimal tested layers pathway, represented graphically
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hidden layer 
sizes

[8, 32, 16, 32, 34], [32, 
16, 32], [8, 16, 32, 24], 
[1, 2, 3, 4, 34], [1, 3, 5, 7, 
9, 11, 13, 15, 25, 30, 34]

Activation relu, logistic, tanh

Solver adam, sgd

● Dataset: 2,395 rows containing the name of the food as well as numerical values for macronutrients and 
vitamins, assuming a 100g serving size

● Preprocessing: 
○ Tokenization using vocabulary size of 50000, ensuring encapsulation of all possible tokens
○ Padded using ʻpostʼ
○ Preprocessing outputs: StandardScaler from scikit-learn
○ Training data was obtained from 80% of the entire dataset

● Each model had three parameters independently changed: the number of epochs for training, the layers for 
the neural network, and the optimizer/activation function
○ For each iteration, a parameter was changed based on conventions in machine learning or previous 

iterationsʼ metrics. 
○ Goal: minimize the mean absolute error, which served as a metric for its accuracy. Each of the mean 

absolute errors were averaged over the thirty-four outputs to gain a holistic understanding of how well the 
model performed. We refer to this mean “mean-absolute error” metric as MMAE.

 

1. Multi-Output Regressor with Custom Neural Network
● Solver: Adam performed better than stochastic gradient descent (sgd)
● Layers: [68, 34, 16, 8, 4, 1], [8, 4, 1], [16, 8, 4, 1], and [32, 16, 8, 4, 1]

○ Most optimal layer pathway was [68, 34, 16, 8, 4, 1], depicted in Figure 2. 
● Epochs: 2, 3, 4, and 5

○ 5 most optimal

2. Neural Network with Directly 34 Outputs (no Multi-Output Regression)
● Solver: Adam performed better than stochastic gradient descent (sgd)
● Epochs: 2, 3, 4, 5, 6, and 7

○ 5 most optimal
● Layers: [32, 34], [32, 16, 32, 34]. [2, 4, 8, 16, 32, 34], [2, 4, 8, 16, 32, 32, 34]

○ Most optimal layer pathway was [32, 16, 32, 34], depicted in Figure 3. 
● Embedding dimension size: originally, it employed an embedding dimension of 1024, however, after 

testing sizes 64, 68, 177 (as in model 1), and 2048, the embedding dimension of 64 resulted in the least 
MMAE

3. GridSearchCV (Multi-Layer Perceptron Regressor)
● Parameter grid shown in Figure 4
● GridSearchCV exhaustively considers all possible parameter combinations provided and fits a model over 

each one, evaluating each and outputting the best combination
● Adam better than the stochastic gradient descent (sgd)
● The rectified linear unit (relu) function performed better than the logistic and tanh functions

○ Results backed assumption for utilizing relu in models 1 and 2
● Utilizing the MLPRegressor built-into scikitlearn rather than the custom neural network models using Keras

○ Most optimized dense layers of the MLPRegressor ended up being [1, 3, 5, 7, 9, 11, 13, 15, 25, 30, 34]. 
● Number of epochs was left untested with the max_iter parameter (1000) being the number utilized
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Given these three modelsʼ optimization, we will 
now compare results across each one overall (See 
Figure 5). The custom neural network model 
outperformed both the MultiOutput and 
MLPRegressor in terms of accuracy given by the 
MMAE. However, it is interesting to see how close 
this metric ended up being, despite quite different 
architectures across the three models. Additionally, 
it appears that all three models generally did well 
in not overfitting with the training data, as the 
slopes of the least-squares-regression-line for the 
training MAE versus testing MAE graphs below were 
quite close to 1, indicating that the model 
predicted to about the same accuracy regardless of 
whether it had seen the input data or not. Although 
these slopes are close enough to 1 for a fair 
conclusion that all three models did not overfit, it 
appears that model 1 slightly outperformed the 
other two models, with a delta from the slope of 1 
of 0.014 as compared to Model 2ʼs 0.052 and Model 
3ʼs 0.027. 
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