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A. Final Adsorption Energy Overall, it can be deduced that a defect graphene 1s more sensitive in the detection of
CO molecules as shown by the small final absorption energy in both 3% and 6%
coverage. Furthermore, the analysis in band gaps informs us that in order to have an
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Figure 1(a) Final Adsorption energies (E,;,) of 3. To further investigate the relationship of different coverages and band gap.
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A study of two-dimensional materials for gas sensors of toxic molecules is conducted. This is .
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