
Its which I

DIGITAL SPLITTER

INTRODUCTION

MATERIALS & PROCESS

RESULTS

CONCLUSION

ACKNOWLEDGEMENTS

Naveen Ram1, Gianna Giancarlo

I set out to build an application which would allow small groups of people to listen to music
together but privately, while not disturbing the rest of the people in a workspace. I wanted to
see whether I could solve this problem which I faced everyday as I worked in computer
science class, and design a simple solution to it. Although I was striving for simplicity, I
encountered many complex problems along the way. I went through three different app
designs, two libraries, twenty classes, and countless compilation errors.

Overall, Digital Splitter offered a unique and original solution to a common problem. It has
already successfully connected two devices, and with some minor adjustments, will soon be
a complete app read for testing. More importantly, it allowed me to got through the whole
process of building an application from start to finish, from idea to design to implementation
to product. I’m proud of the progress I made, from someone who barely knew Java to a
expert on JavaX and Swing. I’m excited to continue working on Digital Splitter in the
future, and eventually get feedback from my peers in order to refine my design. Hopefully, I
will be able to sit in AP Computer Science next year, working on a group project while
listening to music with an application which I have created myself.

Exploring ways to synchronize audio across devices

Purpose

In order to explore the connection between engineering, design, and business, I decided to pick
a problem I experience in my community and to design, code, and market a software solution
over the course of the year. I planned to use Java in order to create a product, which I would
refine and market with the help of my mentor, Gianna Giancarlo, at Future Perfect Labs.

Problem

When I work, I find it helpful to listen to music, and I’m not alone. If you walk through any
public workspace, you can observe people with headphones on, immersed in their own
soundscapes. It is clear that music can be a great catalyst for productivity, but there is a
problem. Today’s music streaming services do not allow people to listen to music together. I
often find myself working with peers in a library, coffee shop, or classroom, faced with the
dilemma of whether to work together, and go through the awkward process of sharing
headphones, or listening to different music and collaborating less. I solved this problem by
creating an application that allows two people to listen to music from one computer on two
different devices. This allows multiple people to be engaged in the same auditory environment,
while not disturbing others in a public workspace. I believe this can increase collaboration and
productivity, as well as bring the communal and social aspect back into music.

In Java, many libraries, or compilations of pre-written classes or templates, are available to
make programming quicker and easier. Selecting the graphical library (Swing or JavaFX) to use
was tricky. I initially wanted to use Swing because I already knew it a little, so I started writing
some Swing methods to play music. I looked for open source music application templates
online to get ideas, and I found that almost everywhere I looked, people were using JavaFX,
which seemed to be intended for media applications. I explored a few JavaFX designs, putting
Swing elements (which I knew how to code) into a JavaFX application template (which I found
online). This turned out to be complicated, as explained below. I then decided to write the entire
app from scratch with Swing.

Libraries
•Swing (Javax)
•JavaFX

Language
•Java

Computer
•MacBook Pro

This project was one of my first programming projects, and the only
project of this scale which I have attempted, so I decided to use the
language I was learning in school, Java. Java is the most popular
programming language in the world, but its syntax is more
complicated than languages like Python, so I had to spend a large
portion of the year learning how to implement various graphics and
auditory elements.

Figure A (JavaFX) Figure B (JavaFX) Figure C (Swing)

I started by loading and playing music from a file. I experimented with different Java functions,
and found a good JavaFX starter on the internet, from which I built the app shown in Figure A.
Once I finished building the interface to choose a song, pause, play, and show a progress bar, I
started exploring how to make a queue. I wanted users on both devices to be able to scroll
through the library, and pick which songs would play next. I found a JavaFX snippet which
performed a similar function, and tried to build my app around that (Figure B). This is when I
started running into problems with JavaFX. I didn’t have time to learn all the intricacies of the
library, so I tried to place a Swing node directly into the JavaFX app. That is the string
(“test!!!”) in the middle of Figure B. Eventually, I decided to build the app from scratch with
Swing so that I could understand all the parts. By not using templates, I would also learn how
to construct apps from the ground up. The result is still a work in progress, but Figure C shows
part of what I have so far.

Interface

Initialization:

The first thing I wanted to enable the user to do when they opened the app was to select their
library: the folder which contains the MP3s they wished to play. I wanted this to happen in a
popup window so that once they were done, the popup would disappear, and they could operate
the app like iTunes, Spotify, or any other music app. To accomplish this, I designed this splash
page:

Main Application:

I wanted to design the main application to be intuitive and easy to use. I started by
diagramming what users could do from each tab.

Splash Page

Queue

Search Bar and list
of songs in queue.

Click selects,
double click

removes from
queue.

Library

Search bar and list of
songs in whole

library. Organized by
artist and title. Click
selects, double click

adds to queue.

Connection

Manage connection
and add listeners.

Now Playing

Check progress,
skip, pause.

Choose Library

The app works as follows. One person connects to another’s computer during the “init” phase,
and they both see their libraries in the “library” tab. They can then scroll through and add songs
from the library tab into the queue, which will play synchronously through both computers.

Figure C (enlarged)

Currently the app looks like Figure C. The Connection button doesn’t yet work, but I have run
a successful test of my approach, sending a song through a server class and playing it
synchronously through a client class. All I have left to do is implement those classes in the
current code,.

NEXT STEPS

Finishing Up

I’m proud of the progress I’ve made as a novice coder, but my app still some work to complete.
All my code is finished, but some of it is in disjointed chunks in older versions of the app. I
need to copy the chunks into the final version of my app and reconfigure them to match the new
system. Some classes just need to be connected; for example, I have successfully written
server and client classes to play songs across devices, but they need to be integrated into
the main class where the user selects what to play. After connecting these last few snippets of
code, I should have a complete project.

Expansion & Evaluation

After completing the application, I plan to do some user testing, and make the app compatible
with more operating systems. I know that I would use a digital splitter application, and I suspect
it would be useful to other people with the same problems as me, but to verify it is a useful
product I need to test it with actual users, starting with students at my high school.

If testing is successful, I want to expand the reach of the app, making it available on Android
and iOS. I also want to allow users to split music from Spotify, SoundHound, or YouTube. I did
a lot of research on getting audio data from streaming services towards the beginning of my
project, but I didn’t find a feasible way to do this. With enough time, I could write a script that
determines which source the audio is coming from, and performs the appropriate methods to
get and split the audio.

I’d like to thank my mentor Gianna Giancarlo for helping me figure out what I wanted to
do. I’d also like to thank Skyyler Seijko for helping me out with difficult coding issues.

I used a lot of online resources throughout the project, including StackOverflow answers,
Oracle documentation, and GitHub projects.

Gunn High School1, Hero Digital2

