Modeling and Comparison of Solutions to Renewable-caused Instability

I. Introduction

Decarbonizing electricity production is a critical step on the fight against climate change. Solar and wind power are growing in popularity as a source of cheap, carbon-free electricity. However, they also make the grid more sensitive to contingencies making blackouts more likely. In this study, 5 proposed solutions to this problem were modeled and compared (fig. 1)

Virtual Inertia

Energy Storage 2

3 Solar Response

Load Response 4

5 Interconnection

Fig. 1: Tested solutions

IV. Data Analysis

Regression was used to quantify how effective each individual solution was in improving the system's stability, as well as each solution's interaction with the other solutions. The results of the regression are shown below in table 2 with a more

showin below in table 2, with a more				Solution	Coefficient
negative coefficient indicating greater				demand	-2.17681
effectiveness. Regression was also directly				transmissio	on 0.74455
performed on individual solutions to better				storage	-2.23575
determine the individual effectiveness of				inertia	-0.05109
each solution. (Table 1)				solar	-2.20267
			Solution 1	Solution 2	Interaction
	Solution 1	Solution 2	Coefficient	Coefficient	Coefficient
	transmission	demand	0.6795	-1.9572	-9.3409
	demand	storage	-2.1829	-2.2401	-2.3206
	demand	inertia	-1.5529	-0.04764	0.4832
	demand	solar	-2.1566	-2.147	-7.8543
	transmission	storage	0.7022	-1.938	-8.0487
	transmission	inertia	0.8246	-0.04775	-0.7614
Table 2:	transmission	solar	0.6827	-1.6285	-7.7770
Regression	storage	inertia	-1.6151	-0.05325	-4.3372
coefficients for	storage	solar	-2.2209	-2.1573	-6.2868
each trial group	inertia	solar	-0.05004	-1.4531	-0.4581

II. Modeling The system was modeled with MATLAB and Simulink. It was broken up into 3 buses, representing smaller regions of the electric grid. In each bus, a load consumed a randomly generated amount of power, supplied by 20% gas and 80% solar power, shown in fig. 2. The 3 buses were connected with transmission lines, shown in fig. 3. To determine the system's stability, each trial, a sudden spike in power consumption was applied in a chosen bus, causing a disturbance in the system frequency. The difference between the initial and minimum frequency reached by the system was then used as a measure for the system stability.

Patrick Xue¹ and Victor Meyerfreund² ¹Palo Alto High School, ²Ekonen

Table 1: Individual regression coefficients for each solution

V. Implications and Next Steps

Comparing the regression coefficients for each trial group, several conclusions can be made:

- priority than other factors (e.g. cost and location)

- combined, so this pair of solutions should be avoided turbines, finer modeling of inverters, etc—are needed to

- The effectiveness of demand response, solar response, and energy storage were found to be similar, suggesting that the relative effectiveness of these solutions should be given lower - Stronger interconnections between the buses unexpectedly decreased system stability, likely a sign of modeling error, but also potentially lower individual effectiveness than other methods, more detailed modeling is needed to test this - Interconnection however, significantly improved the effectiveness of other solutions when combined with them, suggesting that it should be mainly used in systems where a substantial amount of other solutions are already present - Virtual inertia synergized incredibly well with energy storage, possibly due to statistical error, more research needed - Demand and inertia were detrimental to each other when Further modeling studies—adding elements such as wind determine if these results still apply in more realistic scenarios.

VI. Acknowledgements and References Special thanks to Erin Angell and Victor Meyerfreund for helping make this project possible.

The Simulink model, gathered data, and code used for regression analysis can be found at https://github.com/PatXue/Electric-Grid-Stability-Modeling-AAR

Works Cited:

Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Mitigation of Climate Change Summary for Policymakers. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_ WGIII SPM.pdf Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy, 145, 2271-2285.

Trials were divided into 10 groups, one for each pair of the 5 solutions. Between trials in a group, the amount of both solutions were varied between 5 values, for 25 total combinations/trials. For solutions other than virtual inertia, the maximum power capacity (as a percent of bus load) was varied, while for virtual inertia, the inertia constant of the gas generator was varied. As an example, in graph 1, the demand and solar response trial group data is shown.

Extra Solar Capacity (%)